
The University of New South Wales

COMP3151/9154

Foundations of Concurrency

Final Exam

Term 2, 2021

Time Allowed: 24 Hours. Submit by 8AM Sydney time on the 25:th of August.

Total Number of Questions: 6

Total Number of Pages: 4

Total Marks Available: 100

Brief answers are strongly preferred. Extreme verbosity may cost marks.

Produce a typeset PDF file, via LATEX or otherwise, with your answers.

Submit with give cs3151 exam exam.pdf or with the give web interface.

The exam is open-book. You may read anything you like, and in general use any
passive resource.

You may not use active resources—don’t solicit, offer, or accept help of any kind,
with one exception: you may ask private questions on Ed. Johannes will
monitor Ed regularly, except when he sleeps (around 10PM–6AM).

Include the following statement in your PDF file:
I declare that all of the work submitted for this exam is my own work, completed
without assistance from anyone else.

You must adhere to the UNSW student conduct requirements listed at
https://student.unsw.edu.au/conduct.

https://student.unsw.edu.au/conduct


Part I

Question 1 (20 marks)
Explain, informally and in your own words, the difference between the following:

(a) (2 marks) Concurrency and sequential computation.

(b) (2 marks) A lock and a semaphore.

(c) (2 marks) A strong semaphore and a weak semaphore.

(d) (2 marks) Strong and weak fairness.

(e) (2 marks) Synchronous and asynchronous message passing.

(f) (2 marks) Shared-variable concurrent programming and distributed programming.

(g) (2 marks) Classical monitors à la Brinch Hansen & Hoare, and monitors as implemented
in Java.

(h) (2 marks) A safety property and a liveness property.

(i) (2 marks) The meaning of if statements in Promela and in Java.

(j) (2 marks) The setting in which the FLP theorem holds, and the setting in which the
Byzantine Generals algorithm is resilient to crash failures.

Question 2 (10 marks)
Progress is the assumption that a concurrent system does not terminate prematurely. In
other words, it is always true that if at least one process has an enabled transition, then some
transition will eventually be taken. (We’ve tacitly assumed this through most of the course).

Assuming only progress, and introducing no fairness assumptions,1 show that no two-process
mutual exclusion algorithm satisfies eventual entry.

Question 3 (20 marks)
Suppose P = (L, T, s, t) is a synchronous transition diagram. Assume that all transitions in T
are either input or output transitions; there are no internal transitions. Furthermore, assume
that the transitions are unguarded, perform no state update, and that output transitions
always send the contents of a single variable. Thus all transitions in T are of the following
two forms:

`i
>;C⇐x;I−−−−−−→ `j `i

>;C⇒x;I−−−−−−→ `j

A dual of P , written D(P ), is obtained by (a) replacing all input actions in P with output
actions, and vice versa; and (b) renaming all local variables so that the variables of D(P ) are
disjoint from those of P .2 For example, these transition systems are each others’ duals:

`s `1 `t
C ⇒ x

C ⇐ x

D ⇐ y

`s `1 `t
C ⇐ z

C ⇒ z

D ⇒ w

Are the following claims true? For each claim, explain why it’s true, or give a counterexample.

The closed product of P and D(P ) is...

(a) (5 marks) ...convergent if the graph of P is acyclic.

(b) (5 marks) ...convergent for all P .

(c) (5 marks) ...deadlock-free if the graph of P is acyclic.

(d) (5 marks) ...deadlock-free if, for every location ` and channel C, ` has at most one out-
going transition involving C.

1For those who are familiar with the paper from the 2020 exam: justness counts as a fairness assumption for
the purposes of this question.

2The exact naming scheme is unimportant, so long as it generates fresh names. The whole renaming business is
just a technicality to make sure the closed product is well-formed.

Page 2



Part II

These questions are about the paper Time, Clocks, and the Ordering of Events in a Distributed
System by Leslie Lamport (Commun. ACM 21(7): 558-565, 1978).

Question 4 (15 marks)
For each of the following subquestions, write a paragraph of text to answer it, in your own
words.

(a) (5 marks) What is the scientific contribution of the paper?

(b) (5 marks) What is an anomalous behaviour?

(c) (5 marks) Lamport made the following remark about the Chandy-Lamport algorithm for
taking distributed snapshots:3

“I consider the algorithm to be a straightforward application of the basic ideas
from [27]”

...where [27] is, of course, Time, Clocks and the Ordering of Events in a Distributed
System. What do you think he meant by this remark? How would you explain the
connection?

Question 5 (25 marks)
In the acknowledgements, Lamport gives credit to Paul Johnson and Robert Thomas for the
use of timestamps to order operations, and the concept of anomalous behaviour. They are
the authors of RFC 677, which outlines a method for maintaining consistent replicas of a
distributed database. You don’t have to read the RFC! Instead, here is a summary of the
relevant parts:

1. The system consists of n independent database management processes (DBMPs) with
unique PIDs. They communicate with each other using asynchronous message passing
over reliable channels with in-order delivery.

2. Each DBMP maintains a local copy of the database, as a mapping from keys k ∈ K to
pairs (v, (t, p)) of values v ∈ V and timestamps (t, p) ∈ (N× N). In the initial state, all
the DBMPs have identical local copies.

3. Each DBMP with PID i maintains a logical clock Ci ∈ N that is incremented with every
action performed by the DBMP.

4. At any point, a DBMP with PID i may initiate a modification request to update the
database, requesting a new value v to be assigned to key k. When it does so, it sends a
message (k, v, (Ci, i)) to every other DBMP.

5. When a process receives (or initiates) a modification request for key k, it compares
the timestamp of the request with the timestamp of the pre-existing entry for k in its
local database. If the timestamp of the modification is lexicographically larger, the
database entry is updated with the new (value, timestamp); otherwise, the modification
is discarded.

That’s it! Now answer the following questions:

(a) (3 marks) This algorithm guarantees that if two modification requests have the same
timestamp, the modification requests are equal. How?

(b) (2 marks) The system of local clocks here does not satisfy Lamport’s clock condition.
Which item from the above list corresponds to an implementation requirement {IR1, IR2}
from the paper? Which implementation requirement is absent?

3https://lamport.azurewebsites.net/pubs/pubs.html#chandy

Page 3

https://datatracker.ietf.org/doc/html/rfc677
https://lamport.azurewebsites.net/pubs/pubs.html#chandy


(c) (5 marks) Hence, this algorithm may result in causally inconsistent behaviour. Give an
example execution where a modification request m1 is discarded in favour of another
modification m2, even though m2 happens before m1. Note that happens before refers to
the technical term introduced in Lamport’s paper (written m1 → m2).

Hint : the example can be very small.

(d) (5 marks) Propose a modification of the algorithm that makes it satisfy Lamport’s clock
condition. Explain why the example from the previous question is no longer possible with
your modification.

(e) (10 marks) We have seen that the original algorithm is not causally consistent. It is still
eventually consistent, in the following sense: if modifications cease and all outstanding
messages have been received and acted upon, all DBMPs will have identical local copies
of the database.

Define an invariant that can be used to prove eventual consistency. The invariant must:

• be true in the initial state,

• be preserved by the acts of sending and receiving modification requests, and

• imply eventual consistency once there are no more in-flight messages.

Prove these points. You don’t need to use any particular formalism; feel free to state
(and prove) your invariant in prose.

As usual in distributed algorithms, you may assume atomicity of local computation. In
particular, you may assume that rule 5 is executed atomically.

Question 6 (10 marks)
The papers considers a mutual exclusion algorithm as a case study.

(a) (5 marks) The paper presents three requirements, numbered (I-III), on a correct mutual
exclusion algorithm. Compare and contrast these requirements with the ones we have seen
in the course (mutual exclusion, eventual entry, deadlock freedom, absence of unnecessary
delay, bounded waiting, linear waiting). Which of Lamport’s requirements correspond to
which of our requirements? Are there any that don’t correspond to our requirements?

(b) (5 marks) Why are the acknowledgement messages in rule 2 of the algorithm necessary?
Show an example where one of Lamport’s requirements is violated if the algorithm is
modified to never send these acknowledgements.

Page 4


